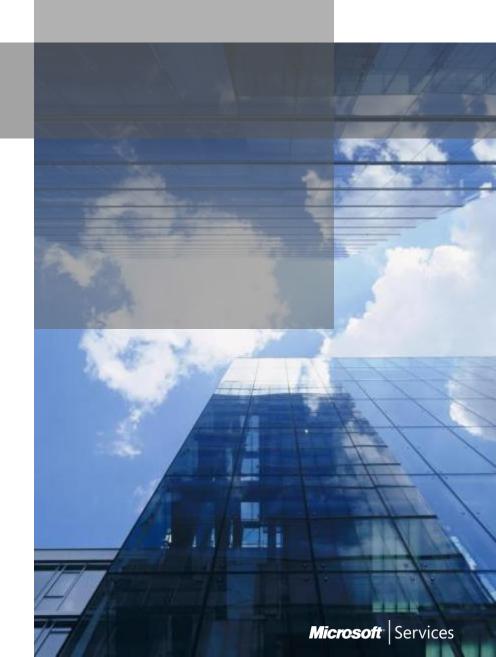
Microsoft Services


Building High performance fault tolerance storage using Windows Server 2012 R2

STRATEGY - CONSULTING - SUPPORT

Moti Bani, Premier Field Engineer 1/5/2014

Table of Contents

- Storage new model
- SAN
- JBODs
- SMB 3
- Wrapping all together

Storage Changes

Azure

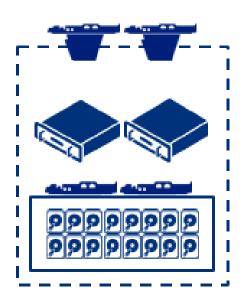
- 1,000,000 physical machines (48 cores, 96 GB RAM)
- Azure is actually Windows vNext
- Major challenge: How to scale storing VM, make it cheaper without compromise performance or features?

Traditional Fiber-channel solutions

- Slow (only 8GB)
- Expensive
- Complex

Storage Approach

- Strategic decision: Lower the storage costs
 - Storage spaces (management layer)
 Cost effective business storage
 - File based storage (infrastructure layer)
 High performance SMB for application workload


What is a SAN really

- Enterprise-grade Physical Disks
- Storage Controllers
- Connectivity Adapters

Connectivity Adaptors

Storage Controllers

Physical Disks

Enterprise-grade capabilities

Familiar Enterprise-Grade Capabilities

Traditional Storage with FC/iSCSI Storage Array

- Storage Tiering
- Data deduplication
- RAID resiliency groups
- Pooling of disks
- High availability
- Persistent write-back cache
- Copy offload
- Snapshots

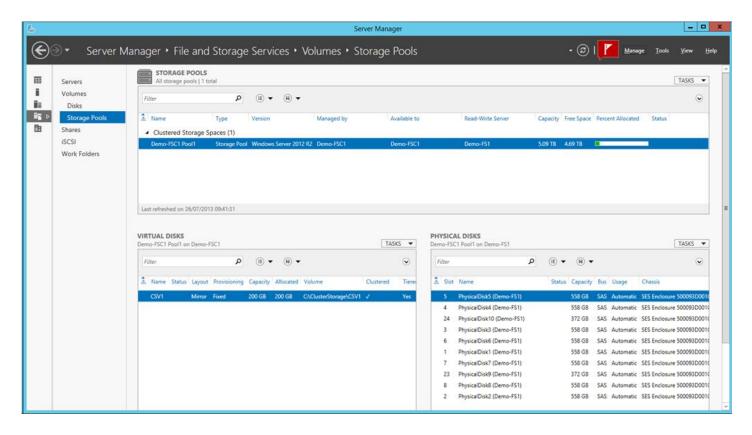
Windows File Server Cluster with Storage Spaces

- Storage Tiering (new with R2)
- Data deduplication (enhanced with R2)
- Flexible resiliency options (enhanced with R2)
- Pooling of disks
- Continuous availability
- Persistent write-back cache (new with R2)
- SMB copy offload
- Snapshots

How it works

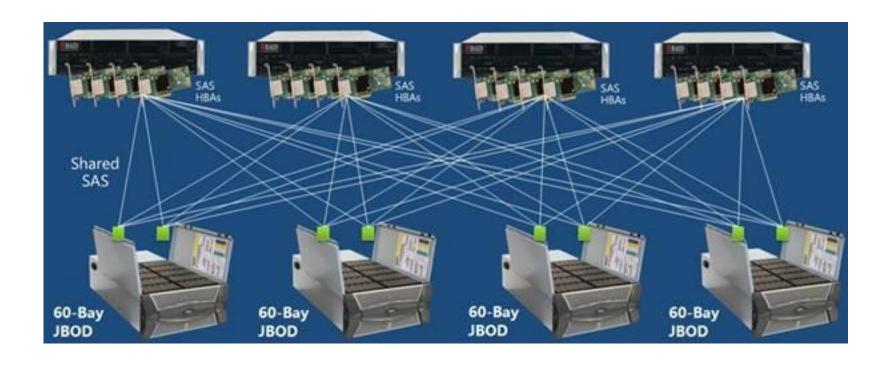
- The new Storage Spaces feature in Windows Server 2012 is a software virtualization and management layer
- Storage administrators can group inexpensive disks into Storage Pools
 - Enable storage aggregation, elastic expansion, and delegated administration
- From this pool you create Virtual Disks (LUN)
 - Each Virtual Disk can be simple, mirrored or parity

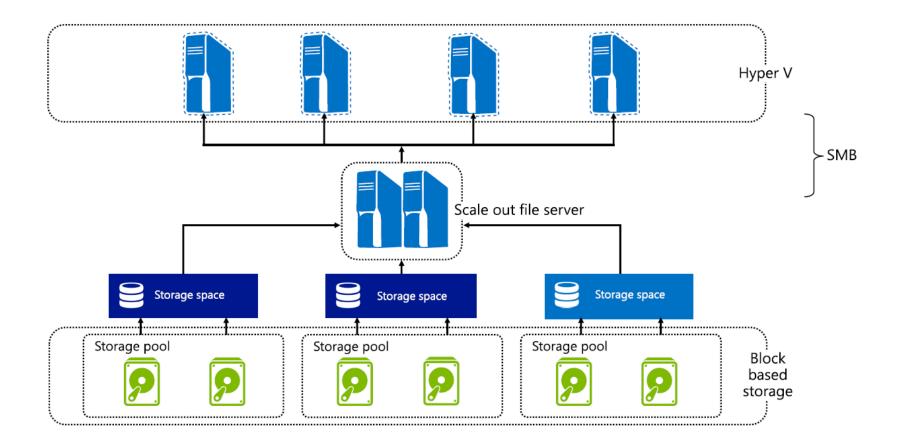
Leveraging the same enterprise-grade SAS SSD and HDD disks



See <u>www.windowsservercatalog.com</u> under the "Storage Spaces" Category

Closer look on the JBOD ...


Connecting the JBOD disks


\$pooldisks = Get-PhysicalDisk | ? {\$_.CanPool -eq \$true }

New-StoragePool -StorageSubSystemFriendlyName *Spaces* - FriendlyName TieredPool1 -PhysicalDisks \$pooldisks

Connecting the JBODs

Microsoft vision

Speeds

НВА	Throughput
3Gb SAS x4	~1.1 GB/sec
6Gb SAS x4	~2.2 GB/sec
4Gb FC	~0.4 GB/sec
8Gb FC	~0.8 GB/sec
16Gb FC	~1.5 GB/sec

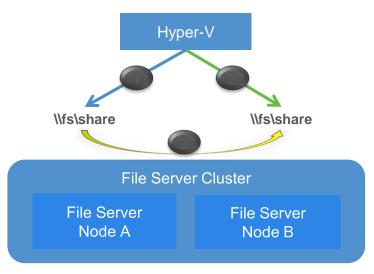
NIC	Throughput		
1Gb Ethernet	~0.1 GB/sec		
10Gb Ethernet	~1.1 GB/sec		
40Gb Ethernet	~4.5 GB/sec		
32Gb InfiniBand (QDR)	~3.8 GB/sec		
54Gb InfiniBand (FDR)	~6.5 GB/sec		

Bus Slot	Throughput
PCIe Gen2 x4	~1.7 GB/sec
PCIe Gen2 x8	~3.4 GB/sec
PCle Gen2 x16	~6.8 GB/sec
PCIe Gen3 x4	~3.3 GB/sec
PCIe Gen3 x8	~6.7 GB/sec
PCle Gen3 x16	~13.5 GB/sec

Numbers are rough approximations. Actual throughput in real life will be lower than these theoretical maximums

SMB 3

- SMB Transparent Failover Continuous availability
- SMB Scale-Out Active/Active file server clusters
- SMB Direct (SMB over RDMA) Low latency, low CPU use
- SMB Multichannel Network throughput and failover
- SMB Encryption Security
- VSS for SMB File Shares Backup and restore
- SMB PowerShell and VMM Support

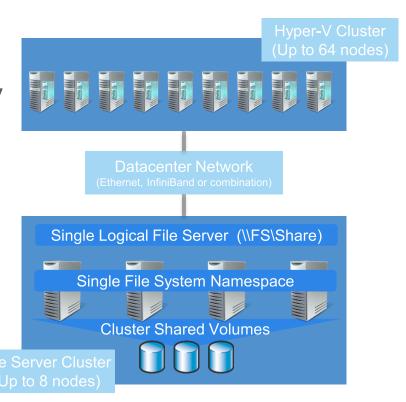

SMB Transparent Failover

- Failover transparent to server application
- Zero downtime small IO delay during failover
- Supports planned and unplanned failovers

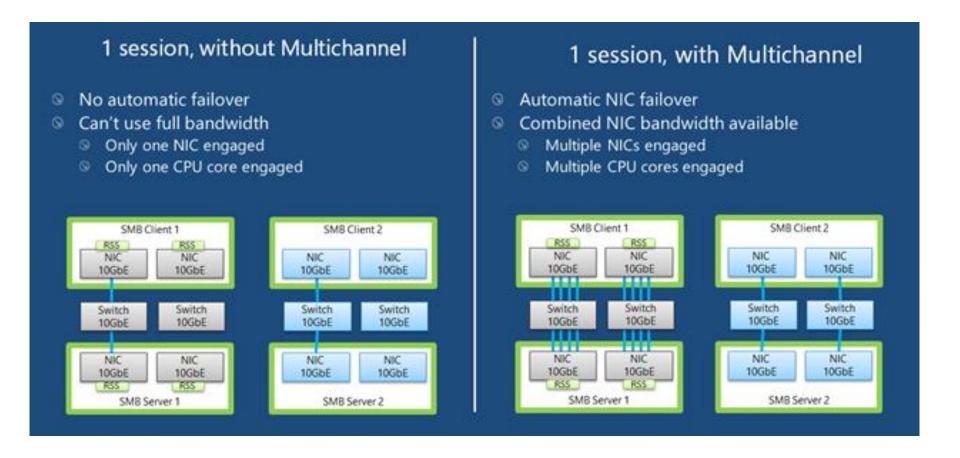
Normal operation

Failover share - connections and handles lost, temporary stall of IO

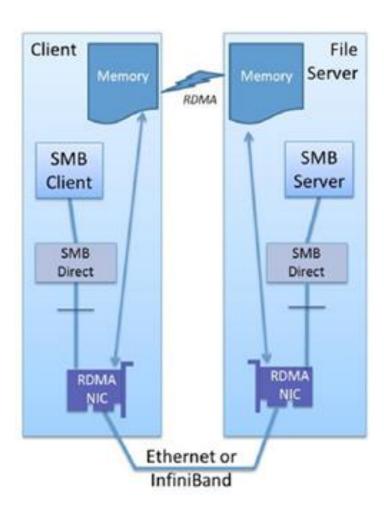
Connections and handles auto-recovered Application IO continues with no errors



SMB Scale-Out


- Targeted for server app storage
- Example: Hyper-V and SQL Server
- Increase available bandwidth by adding nodes
- Leverages Cluster Shared Volumes (CSV)

Key capabilities


- Active/Active file shares
- Fault tolerance with zero downtime
- Fast failure recovery
- CHKDSK with zero downtime
- Support for app consistent snapshots
- Support for RDMA enabled networks
- Simple management

SMB Multi Channel

SMB Performance – Direct

TCP/IP to RDMA:

	Scenario	Cycles Consumed		Storage bandwidth		Cycles/byte
Α	Local baseline	0.9 Gcycles		3.74 GB/s		0.24
В	SMB with 10GbE	1.8 Gcycles	÷	1.19 GB/s	_ = _	1.49
С	SMB Direct with 32GbIB	0.9 Gcycles		**3.28 GB/s**		0.28

Comparing B and C: 3 times faster, half the CPU, 5 times fewer cycles/byte

\\3413670102-23			
Processor	_Total		
% Privileged Time	7.243		
SMB2 Client Shares	_Total		
Avg. Data Bytes/Request	524,288.000		
Avg. sec/Data Request	0.001		
Current Data Queue Length	8.000		
Data Bytes/sec	3,250,937,813		
Data Requests/sec	6,200.672		

Network Configuration Options

	Throughput	Fault Tolerance for SMB	Fault Tolerance for non-SMB	Reduced CPU utilization
MC + Single 1GbE				
MC + Multiple 1GbE	A	A		
MC + Multiple 1GbE + LBFO	A		A	
MC + Single 10GbE				
MC + Multiple 10GbE		A		
MC + Multiple 10GbE + LBFO			A	
MC + Single RDMA				A
MC + Multiple RDMA		A		A

Multichannel is on by default for SMB.

LBFO is helpful for faster failover.

LBFO is helpful for non-SMB traffic (mixed workloads, management).

LBFO is not compatible with RDMA.

Questions?