
Windows PowerShell is a shell and scripting language used by many IT professionals.
Very often they get caught up in pre-conceptions and misinterpretations, usually
based on prior experience with scripting or development.
In this session we will explore the 10 most common mistakes and traps people fall
into with PowerShell, and how to avoid them.
PowerShell Remoting

Martin Schvartzman

Senior Premier Field Engineer

maschvar@microsoft.com

Why remote commands?

In the old days…

 PsExec and WMI were almost the only tools allowing
remote execution

 With the downside: The new process on the remote
machine cannot be controlled from the machine where
the process was spawned

What isn’t PowerShell Remoting?

 The -ComputerName parameter does not rely on
PowerShell Remoting.

 They use distributed COM (DCOM) or remote
procedure call (RPC) to connect to the remote
systems

 For example:
 Get-WmiObject

 Get-HotFix

 Get-Process

 Get-EventLog

What is PowerShell Remoting?

 A PowerShell feature that allows remote
management from a central location

 Based on WinRM 2 (an implementation of WS-Man)

 Adapts the Universal Code Execution Model
(whatever runs locally should run anywhere)

 There are many different styles of remoting
(interactive, fan-out, fan-in, implicit)

What do I need?

 PowerShell v2.0 (v3.0 or above for some features)

 The user needs to be in the local administrators
group (for the default session configurations)

 The network location must be private or domain

 Remoting needs to be enabled (It is disabled by
default)

 As of Windows Server 2012, PowerShell Remoting is
enabled by default and is mandatory for server
management

Under the hood

 WinRM / WS-Man is based on HTTP and a single port
(5985)

 5986 for HTTPS

 Objects are serialized into XML streams

PowerShell

WinRM

PowerShell

WinRM

HTTP / XML Data

CIM vs. WMI

 WMI requires DCOM connectivity

 TCP 135 & TCP 1024+

 CIM requires less complex network connectivity

 TCP 5985

 Open platform WSMan standard (OS Agnostic)

 Get-WmiObject Win32_BIOS –ComputerName DC01

 Get-CimInstance Win32_BIOS –ComputerName DC01

Getting started

 Enable-PSRemoting

 winrm quickconfig

 Computer Configuration -> Policies -> Administrative
Templates -> Windows Components

 Windows Remote Management

 Windows Remote Shell

I don’t want to be me

 Cmdlets in PowerShell do not accept credentials as
strings (username and password). They expect a
PSCredential object

 This object can either be obtained using the cmdlet
Get-Credential, or using New-Object
System.Management.Automation.PSCredential

 Credentials can also be saved to disk or a database
using the data protection API

 Export-CliXml / Import-CliXml

When do I use it?

 1:Many (fan-out): Large Scale Automation
 Send the script to remote machines

 Throttling – limits the number of concurrent operations

 1:1 (interactive): Secure Telnet Replacement
 Cmdline equivalent of Remote Desktop

 Interact with a remote machine as if it were local

 Many:1 (fan-in): Delegated Administration & Hosting
 No tools installation required on client

 Constrained session environment (cmdlets, parameters, language)

One at a time

 Invoke-Command

 Can be used against one or many remote computers

 Script blocks can be executed remotely as well as
scripts. The result can be treated as coming from the
local machine

 Scripts do not need to be on the remote machine or
on a share. WinRM copies the script in the
background

Keep it running

 New-PSSession

 Create a persistent session object

 Persistent sessions can be used to prevent the
creation of a new runspace every time

 Pass the session object using the -Session
parameter

I want to be there

 Enter-PSSession

 Enter the previously created session, or create one
on the fly

 For some operations determine the lifetime of a
session is desired

 v2.0: If the job controller looses the connection the session
is destroyed and running scripts are stopped

 v3.0 and above: Sessions can be disconnected and
reconnected even from another computer

Be there, here

 Import-PSSession

 Brings the remote commands to the local session

 Can import cmdlets that do not exist on the local
computer

 Managing different technologies (SharePoint,
Exchange, Active Directory) from a single computer
without the need of installing the management tools
on various machines

Where are the tweaks?

 Use the WSMan: PSDrive to navigate through the
configuration settings

 dir WSMan:\localhost\Service -Recurse

 Set-Item WSMan:\localhost\Shell\MaxShellsPerUser 25

 Set-Item WSMan:\localhost\listener*\Port 8888

What about non-admins?

 By default, only local administrators can use remote
PowerShell

 Set-PSSessionConfiguration can be used to change
the permission using the UI or SDDL

 The information can be also changed directly in the
registry (XML)

 To transfrom SDDL into something readable and vice
versa, the CommonSecurityDescriptor class can be
used

PowerShell Web Access

 Acts as a Windows PowerShell gateway, providing a
web-based PowerShell console

 Increases the value of your investment in PowerShell

 Built for phones, tablets

 Cross-platform support

Client
Browser

Internet
Access

PowerShell
WebAccess Corporate Network

Q & A

Resources

 Layman’s Guide to PowerShell 2.0 remoting:
http://www.ravichaganti.com/blog/?page_id=1301

 Administrator’s Guide to Windows PowerShell
Remoting:

http://powershell.com/cs/media/p/4908.aspx

 Secrets of PowerShell Remoting:
http://powershell.org/wp/wp-
content/uploads/2012/08/SecretsOfPowerShellRemoting.zip

http://www.ravichaganti.com/blog/?page_id=1301
http://powershell.com/cs/media/p/4908.aspx
http://powershell.org/wp/wp-content/uploads/2012/08/SecretsOfPowerShellRemoting.zip

